Friday, December 13, 2019

The New Mercedes-Benz GLK-Class - PART VIII

The New Mercedes-Benz GLK-Class - PART VIII





Fine-tuning the dynamic handling control systems is one of the major challenges when developing an SUV. Development testing therefore takes place under punishing desert conditions in the baking Namib Desert, while the sub-zero conditions of the Arctic Circle provide the opposite extreme to measure and test the GLK prototypes. An ongoing comparison between "Fire & Ice" is designed to ensure that the various findings do not have a reciprocal negative influence. While the fine-tuning of control systems such as ESP, 4ETS, ASR, ABS is based on objective measurement criteria using state-of-the-art technology, the finesse and experience of the test engineers continue to play a decisive role. For instance, the developers in the MTC managed to optimise the control quality and interaction of the individual systems in such a way as to substantially improve powertrain performance. Why do you come to Namibia to carry out testing? What particular challenges does Namibia pose for the GLK? Within the context of our global development process, Namibia covers a portion of the challenges we wish to overcome with our GLK. And the prevailing conditions found in the Namib Desert especially are precisely what we want for our torture programme under extreme desert conditions.





On the one hand, there are the extreme temperatures, with the air heating up to 50 degrees Celsius and surface temperatures that can even reach 80 degrees. On top of that you have extremely fine sand and the notorious corrugated tracks through hostile rocky terrain. A vehicle that can withstand the conditions here is ready for any desert in the world. Naturally, the findings made in the Namib are always considered in the context of our test results under other operating conditions. Any enhancements must also satisfy completely contradictory requirements, of course, meaning they must also work in the bitter cold of the Arctic, the humid heat of the tropics, as well as in routine day-to-day operation in Central Europe. What tests do you carry out here? Is there actually any need to expose the GLK to such extreme conditions? After all, the vehicle will mostly be driven under normal road conditions in Western countries. Compared to the G-, GL- and M-Class, the GLK is certainly the most road-oriented model series within the Mercedes-Benz SUV and off-roader line-up.





Yet we still attach great importance to the vehicle's performance abilities off the beaten track, and even under the most extreme conditions. That's part of the SUV philosophy at Mercedes-Benz: regardless of the fact that only a few customers venture off-road, we must still prepare the vehicle for this eventuality and guarantee a certain level of off-road performance. Plus, of course, we also need to think of the car markets in countries where conditions are no less out of the ordinary, such as Russia, for example, or the Middle East states. There are also the requirements of the world's developing automotive markets, such as India or China, to bear in mind. At the end of the day, our customers in Europe also stand to benefit from these developments, as there is no difference between the models delivered to a whole array of markets. Are there are conflicting requirements? What sort of conflicting aims need to be reconciled to ensure that the GLK is able to perform to Mercedes' high standard both in Artic climes at minus 30 degrees and in a desert environment with temperatures of 45 degrees?





We must of course ensure that optimisation of a particular parameter to safeguard resilience to high ambient temperatures does not take place at the expense of the vehicle's performance capabilities when faced with Arctic conditions. To take an example: if we were to optimise the engine's cooling air supply solely with a view to operation in extreme heat, problems would occur during the warm-up phase at low outside temperatures, and vice versa. Painstakingly detailed work needs to be carried out in order to cover all bases. And this applies to virtually all areas of development. Does the heating respond fast at minus 30 degrees, does the THERMOTRONIC quickly cool down the interior rapidly when the sun is at its most intense and temperatures are around plus 45 degrees. Or the fuel supply to the engine: does diesel fuel continue to flow freely at extremely low temperatures, is the formation of vapour bubbles in petrol engines prevented at extremely high temperatures? Do the filter systems for the engine and passenger compartment operate reliably? Do all of the different sealing systems perform their tasks efficiently?

No comments:

Post a Comment